top of page



Inheritance and maintenance of small RNA-mediated epigenetic effects.

Quarato P*, Singh M*, Bourdon L, Cecere G.

*Equal contribution

Bioessays 2100284 (2022). doi:10.1002/bies.202100284 (Review)


A virus-derived microRNA targets immune response genes during SARS-CoV-2 infection.

Singh M*, Chazal M*, Quarato P, Bourdon L, Malabat C, Vallet M, Vignuzzi M, Werf S.v.d, Behillil S, Donati F, Sauvonnet N, Nigro G, Bourgine M, Jouvenet N, Cecere G.

EMBO Rep. 2021, doi: 10.15252/embr.202154341 (linked Biorxiv. 2021, doi: 10.1101/2021.09.09.459577 )

piRNAs regulate transcriptional programs during germline development.

Cornes E, Bourdon L, Singh M, Mueller F, Quarato P, Wernersson E, Bienko M, Li B, Cecere G.

Dev. Cell 2021, doi: 10.1016/j.devcel.2021.11.025

Featured in Developmental Cell Previews: Charlesworth AG, Nitschko V, Renaud MS, Claycomb JM. PIWI puts spermatogenesis in its place. Dev Cell. 2022 Jan 24;57(2):149-151. doi: 10.1016/j.devcel.2022.01.001.

Translation and codon usage regulate Argonaute slicer activity to trigger small RNA biogenesis.

Singh M, Cornes E, Li B, Quarato P, Bourdon L, Dingli F, Loew D, Proccacia S, Cecere G.

Nat Comms. 2021, doi: 10.1038/s41467-021-23615-w (linked Biorxiv. 2020, doi: 10.1101/2020.09.04.282863)

Featured in the Editor’s highlight collection of “From molecules and cells to organisms” and Author interview at Biopatrika

Germline-inherited small RNAs facilitate the clearance of untranslated maternal mRNAs in C. elegans embryos.

Quarato P, Singh M, Cornes E, Li B, Bourdon L, Didier C, Cecere G.

Nat Comm. 2021, doi: 10.1038/s41467-021-21691-6 (Linked Biorxiv doi:10.1101/2020.02.03.919597)

Featured in the Editor’s highlight collection of “From molecules and cells to organisms” 

Functional Characterization of the m6A-Dependent Translational Modulator PfYTH.2 in the Human Malaria Parasite.

Sinha A, Baumgarten S, Distiller A, McHugh E, Chen P, Singh M, Bryant JM, Liang J, Cecere G, Dedon PC, Preiser PR, Ralph SA, Scherf A.

mBio. 2021, doi: 10.1128/mBio.006.61-21

Collaboration with Baumgarten lab and Scherf lab on Ribo-seq for this interesting story


Small-RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants.

Barucci G*, Cornes E*, Singh M*, Li B, Ugolini M, Samolygo A, Didier C, Dingli F, Loew D, Quarato P, Cecere G.

Nat Cell Biol. 2020, doi: 10.1038/s41556-020-0462-7.

*Equal contribution, Highlighted on the Cover page of Nature Cell Biology


A secreted Heat shock protein 90 of Trichomonas vaginalis.

Singh M, Beri D, Nageshan RK, Chavaan L, Gadara D, Poojary M, Subramaniam S, Tatu U.

PLoS Negl Trop Dis. 2018, doi: 10.1371/journal.pntd.0006493.


Characterization of HSP90 isoforms in transformed bovine leukocytes infected with Theileria annulata.

Kinnaird JH, Singh M, Gillan V, Weir W, Calder ED, Hostettler I, Tatu U, Devaney E, Shiels BR.

Cell Microbiol. 2017, doi: 10.1111/cmi.12669.

Antigenic characterization of 52-55kDa protein isolated from Trypanosoma evansi and its application in detection of equine trypanosomosis.

Yadav SC, Kumar R, Kumar J, Singh M, Bera BC, Kumar R, Tatu U, Tehri K.

Res Vet Sci. 2017, doi: 10.1016/j.rvsc.2017.07.034.

The Potential of Lactobacillus casei and Entercoccus faecium Combination as a Preventive Probiotic Against Entamoeba.

Sarjapuram N, Mekala N, Singh M, Tatu U.

Probiotics Antimicrob Proteins. 2017, doi: 10.1007/s12602-016-9232-z.


First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90.

Raman S*, Singh M*, Tatu U, Suguna K.

Sci Rep. 2015, doi: 10.1038/srep17015.

*Equal contribution

Heat Shock Protein 90 regulates encystation in Entamoeba.

Singh M, Sharma S, Bhattacharya A, Tatu U.

Front Microbiol. 2015, doi: 10.3389/fmicb.2015.01125.


A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.

Singh M, Shah V, Tatu U.

J Mol Biol. 2014, doi: 10.1016/j.jmb.2014.01.008 .

Identification of heat shock factor binding protein in Plasmodium falciparum.

Sayeed SK, Shah V, Chaubey S, Singh M, Alampalli SV, Tatu U.

Malar J. 2014, doi: 10.1186/1475-2875-13-118.

Heat shock protein 90 as a potential drug target against surra.

Rochani AK, Mithra C, Singh M#, Tatu U.

Parasitology. 2014, doi: 10.1017/S0031182014000845. (Review)

#Corresponding author

Heat-shock Protein 90 as an Antimalarial Target.

Rochani A, Singh M, Tatu U.

Inhibitors of Molecular Chaperones as Therapeutic Agents, Edited by Timothy D Machajewski, Zhenhai Gao. 2014, Royal Society of Chemistry., ISBN: 978-1-84973-666-4. doi: 10.1039/9781849739689-00379 (book chapter)


Heat shock protein 90 inhibitors as broad-spectrum anti-infectives.

Rochani AK, Singh M, Tatu U.

Curr Pharm Des. 2013,  doi: 10.2174/1381612811306030377 (Review)

bottom of page